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Abstract. The density of the elastic energy of a deformed membrane in a liquid state is calculated. The
thermodynamic equilibrium of its different parts is taken into account. The shape equation of a closed
membrane is deduced. The quantity which keeps its value, when the variations of the energy of the system
are calculated, is not the area of the deformed membrane, but its area in the flat tension free state. Because
of this, additional terms appear in the second variation around the stable state. The case of a lipid bilayer
and its fluctuations is examined for both free and blocked exchange of molecules between the monolayers,
comprising the bilayer.

PACS. 87.16.Dg Membranes, bilayers, and vesicles

1 Introduction

The problem, treating the shape, which a membrane can
take, is a subject of intensive investigations because of
its relation to the shape of biological cells [1]. The main
factors determining this shape, are the elastic properties
and the spontaneous curvature of the membrane.

Following Helfrich [2], the density of the stretching
elastic energy gs of a piece of a flat membrane with
area s is:

gs =
1
2
ks

(s − s0)2

ss0
, (1)

where s0 is the area in its tension free state, and ks

is the stretching elasticity modulus. Again according to
Helfrich [2], the density of the bending elastic energy gc

per unit area of a bent membrane in a point with main
curvatures c1 and c2 is:

gc =
1
2
kc(c1 + c2 − c0)2 + kcc1c2, (2)

where kc and kc are the bending elasticity and the saddle
splay bending elasticity of the membrane, and c0 is its
spontaneous curvature. The order of magnitude of kc is
kc ∼ D2ks, where D is the thickness of the membrane.
The same estimation is also valid for kc. Expressions (1)
and (2) are valid for a membrane in its liquid crystal state,
when it can be treated as a two-dimensional liquid. This
means that its static shear elasticity moduli are equal to
zero. Further on in the present work, only membranes of
such type will be considered.
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Based on the bending elasticity of the kind of equa-
tion (2) and implicitly making the assumption that the
stretching elasticity modulus ks is infinitely large, Ou-
Yang Zhong-can and Helfrich [3–5] derived the following
equation of shape of a closed membrane:

∆p + λ(c1 + c2) − kc(c1 + c2 − c0)
[
1
2
(c1 + c2)2

−2c1c2 +
1
2
c0(c1 + c2)

]
− kc∆s(c1 + c2) = 0, (3)

where, in addition to the quantities defined below equa-
tions (1, 2), ∆p and λ are Lagrange multipliers, provid-
ing conservation of the area of the membrane and of the
volume enclosed by the membrane, and ∆s is the two-
dimensional Laplace-Beltrami operator on the surface un-
der consideration.

In the present work, we rederive the shape equation
of a closed liquid membrane taking into account the finite
value of the stretching elasticity ks and the related to this
fact consequences.

2 The model

We consider an infinitely thin membrane with a given area
S0 in its flat tension free state, elastic moduli of stretching,
bending and saddle splay bending ks, kc, and kc respec-
tively, and spontaneous curvature c0. Let s0 be the area
of a “physically infinitely small” piece of the membrane
in its tension free state, and let s and c1 and c2 be the
area and the main curvatures of this piece in its deformed
state. We denote the elastic energy of the deformed piece
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with F (s, s0, c1, c2), requiring this energy to be zero in
its flat tension free state, i.e. considering the flat tension
free state as a ground state. Let D be the thickness of
the real membrane, which we model with the infinitely
thin one. The most general expression for F (s, s0, c1, c2),
in which all terms, up to the second power of Dc1, Dc2

and (s − s0)/s0 are taken into account, is (Helfrich and
Kozlov [6], Safran [7]):

F (s, s0, c1, c2) = s0

[
1
2
ks

(s − s0)2

(s0)2
+

1
2
kc(c1 + c2)2

−kcc0(c1 + c2) + kcc1c2 + ksl
s − s0

s0
(c1 + c2)

]
· (4)

In addition, we define the tension σ(s, s0, c1, c2) of the
curved piece of the membrane via the relation:

σ(s, s0, c1, c2) =
(

∂F (s, s0, c1, c2)
∂s

)
s0,c1,c2

= ks
s − s0[1 − l(c1 + c2)]

s0
· (5)

It can be shown, that l is the distance between the surface,
presenting the membrane, and the neutral surface of the
membrane.

Let an elastic surface Σ be given and in each of its
points the main curvatures be defined. Let us consider
two “physically infinitely small” pieces of Σ, with areas
sa and sb, areas in their tension free states sa

0 and sb
0, and

main curvatures ca
1 , c

a
2 and cb

1, c
b
2. The upper indices a and

b stand for the first and second piece respectively. Let, in
addition, the relation sa

0 + sb
0 = sab

0 be fulfilled. One nec-
essary condition for the surface Σ to be in equilibrium is:

{
∂

sa
0

[F (sa, sa
0 , c

a
1 , c

a
2)

+F (sb, sab
0 − sa

0 , c
b
1, c

b
2

] }
sa,sb,sab

0 ,ca
1 ,ca

2 ,cb
1,cb

2

= 0. (6)

Equation (6) provides that there will be no lateral redis-
tribution of material (molecules) between the two parts
of the membrane. It is a direct consequence of the re-
quirement for equality of the chemical potentials of the
molecules comprising the bilayer (see Boruvka and Neu-
mann [8]), or the requirement for mechanical equilibrium
of each part of the membrane (see Evans and Skalak [9]).
From equations (6, 4), keeping only the terms contribut-
ing to the energy F (s, s0, c1, c2), defined via equation (4),
and neglecting all terms higher than second order with
respect to D/R and (s − s0)/s0, we obtain:

σ(s, s0, c1, c2) + kcc0(c1 + c2) = σ0, (7)

where σ0 is the tension of a flat membrane in equilib-
rium with each part of the surface Σ. The condition for
lateral equilibrium for the case of a cylindrical deforma-
tion of a symmetric membrane was treated by Kozlov and
Markin [10].

From equations (7, 5), disregarding again the higher
order terms, for a small enough piece of the membrane we
obtain:

s0 = s

[
1 +

(
l +

kcc0

ks

)
(c1 + c2) − σ0

ks

]
· (8)

This equation is an important result, permitting to obtain
the shape equation of the membrane. Let Σ be a closed
surface. The integration of equation (8) on it gives:

S0 = S

(
1 − σ0

ks

)
+

(
l +

kcc0

ks

) ∮
Σ

(c1 + c2)ds, (9)

where S is the area of Σ and S0 – its area in the flat ten-
sion free state. In the frames of the same approximation,
equation (9) can be rewritten in the form:

σ0 = ks
S − S0

S0
+

ks

S0

(
l +

kcc0

ks

)∮
Σ

(c1 + c2)ds. (10)

We define the density of the elastic energy f(σ0, c1, c2) of
the deformed membrane as follows:

f(σ0, c1, c2) =
F (s, s0, c1, c2)

s
· (11)

The expression for f(σ0, c1, c2) is:

f(σ0, c1, c2) =
1
2

(σ0)2

ks
− kcc0(c1 + c2)

+
1
2

[
kc − l2ks − 2kcc0l − (kcc0)2

ks

]
(c1 + c2)2

+ kcc1c2. (12)

The modified bending elasticity Kc and the modified spon-
taneous curvature C0, participating in equation (12), are
given by the relations:

Kc =

[
kc − ks

(
l +

kcc0

ks

)2
]

,

C0 =
kc

Kc
c0.

(13)

The first of these dependencies was deduced by Helfrich
and Kozlov [6] for the neutral surface for the case of cylin-
drical deformation.

We denote with ∆p the difference of the pressures out-
side (pout) and inside (pin) the closed membrane, ∆p =
pout − pin.

The total shape energy G[σ0(Σ, S0), Σ, ∆p] is a func-
tional, which depends on the shape of the surface Σ and
on the functional σ0(Σ, S0) (see Eq. (10)). The functional
G[σ0(Σ, S0), Σ, ∆p] is a sum of the integral of f(σ0, c1, c2)
on Σ and the term ∆p V where V is the volume, enclosed
by Σ. The final expression for G, in the frames of the
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considered approximation, is:

G[σ0(Σ, S0), Σ, ∆p] =
1
2

(σ0)2

ks
S0

+
∮

Σ

[
1
2
Kc(c1 + c2)2 − KcC0(c1 + c2)

]
ds

+ ∆p

∫
dV + 4πkc. (14)

In equation (14) it is assumed that Σ is topologically
equivalent to a sphere.

One necessary condition for the stability of the sur-
face Σ is the first variation of G to be zero. In the following
section, the variations of G will be determined.

3 Variations of the shape energy. Shape
equation

To take the variation of the surface Σ we will follow the
procedure used by Ou-Yang Zhong-can and Helfrich [5].
Let Σ be parametrized by two generalized coordinates
(u, v) and let n(u, v) be the normal unit vector to Σ in a
point with coordinates (u, v). Let Y (u, v) be the radius-
vector of the point with coordinates (u, v) on Σ. The
slightly varied surface Σ′ is defined by the ensemble of
radius-vectors Y ′(u, v):

Y ′(u, v) = Y (u, v) + Ψ(u, v)n, (15)

where Ψ(u, v) is a sufficiently small and smooth function.
The quantity σ0 is given via equation (10) and its first
variation δσ0 is:

δσ0 =
∮

Σ

[
ks

S0
(c1 + c2) +

2ks

S0

(
l +

kcc0

ks

)
c1c2

]
Ψds.

(16)

The first variation δG of the functional
G[σ0(Σ, S0), Σ, ∆p] can be calculated using equa-
tions (14, 16, 10):

δG[σ0(Σ, S0), Σ, ∆p] =

σ0

∮
Σ

[
(c1 + c2) + 2

(
l +

KcC0

ks

)
c1c2

]
Ψds

+
∮

Σ

{
∆p + Kc

[
(c1 + c2)

(
2c1c2 − 1

2
(c1 + c2)2

)

− 2C0c1c2 − ∆s(c1 + c2)
]}

Ψds · (17)

From equation (17) we obtain the generalization of
the shape equation derived by Ou-Yang Zhong-can and
Helfrich [5], namely:

∆p + σ0(c1 + c2) + Kc

{
(c1 + c2)

[
2c1c2 − 1

2
(c1 + c2)2

]

− 2
[
C0 − σ0

Kc

(
l +

KcC0

ks

)]
c1c2 − ∆s(c1 + c2)

}
= 0,

(18)

where Kc and C0 are given by equations (13) and σ0 – by
equation (10). Equation (18) will have the same form as
the one derived by Ou-Yang Zhong-can and Helfrich [5],
if an effective bending elasticity modulus keff

c and a spon-
taneous curvature ceff0 , different from the initial ones, are
introduced:

keff
c = Kc

ceff0 = C0 − σ0

Kc

(
l +

KcC0

ks

)
· (19)

In the shape equation (18) derived by us, σ0 is not a
Lagrange multiplier as λ in equation (3), but a functional
of the surface Σ (see Eq. (10)). As a consequence, the
shape equation is not differential, but integro-differential.

Equation (18) is a shape equation in the case when
the pressure difference ∆p (but not the volume V )
and the area S0 of the flat tension free membrane are
fixed. When the second variation δ2G of the functional
G[σ0(Σ, S0), Σ, ∆p] is calculated, the variation of σ0 must
also be considered, because it is not constant. For the var-
ied surface there is no constraint for conservation of the
volume enclosed by it. The calculation of the second vari-
ation gives:

δ2G[σ0(Σ, S0), Σ, ∆p] = δ2
(1)G + δ2

(2)G. (20)

The variation δ2
(1)G corresponds to the one obtained by

Ou-Yang Zhong-can and Helfrich [5], with effective values
of the bending elasticity keff

c and the spontaneous curva-
ture ceff0 given by equation (19).

The variation δ2
(2)G is due to the fact that σ0 is not

constant and its variation is different from zero. The result
for δ2

(2)G is:

δ2
(2)G =

ks

S0

{∮
Σ

[
(c1 + c2) + 2

(
l +

KcC0

ks

)
c1c2

]
Ψds

}2

·
(21)

The calculated by us second variation of the elastic energy
differs from the one, calculated by Ou-Yang Zhong-can
and Helfrich [5] in the term δ2

(2)G. It is present even in the
case when l = 0 and C0 = 0.

4 Lipid bilayer

In this section, the results obtained for monolayers will be
used to deduce the shape equation of a bilayer.

We will consider a lipid bilayer, consisting of two mi-
croscopically identical monolayers, with elastic constants
km

c , k
m

c , km
s . We choose the surface, representing the bi-

layer, to coincide with the dividing surface between the
two monolayers. In such case, if for the outer monolayer
the spontaneous curvature is cm

0 and the coefficient, ac-
counting for the coupling between the stretching and the
bending is lm, then for the inner monolayer they will be
(−cm

0 ) and (−lm), respectively. Let the areas of the outer
and inner monolayer in their flat tension free states be
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Sout
0 and Sin

0 and let an area Sb
0 be introduced with the

property Sout
0 + Sin

0 = 2Sb
0. We assume that the elastic

energy of the bilayer is equal to the sum of the elastic
energies of the two monolayers. Evidently the area S is
the same for the two monolayers. The quantities σout

0 and
σin

0 (see Eq. 10) for the outer and inner monolayer can be
defined as follows:

σout
0 = km

s

S − Sout
0

Sb
0

+
km

s

Sb
0

(
lm +

km
c cm

0

km
s

) ∮
Σ

(c1 + c2)ds

(22)

and

σin
0 = km

s

S − Sin
0

Sb
0

− km
s

Sb
0

(
lm +

km
c cm

0

km
s

) ∮
Σ

(c1 + c2)ds.

(23)

When writing equations (22, 23), the quantity (Sout
0 −

Sin
0 )/Sb

0 is assumed to be of the order of (S − Sout
0 )/Sout

0

and (S − Sin
0 )/Sin

0 and all the approximations, following
from this assumption, have been made (see the discus-
sion in the beginning of Sect. 2). Under these assump-
tions the elastic energy Eb(Σ, Sout

0 , Sin
0 ) of a lipid bilayer

represented by an arbitrary surface Σ is:

Eb(Σ, Sout
0 , Sin

0 ) =

Sb
0

2km
s

[(σout
0 )2 + (σin

0 )2] +
∮

Σ

[
1
2
Kb

c(c1 + c2)2
]

ds, (24)

where

Kb
c = 2

[
km

c − km
s

(
lm +

(km
c cm

0 )2

km
s

)2
]
· (25)

In the case of free flip-flop (the exchange of molecules
between the monolayers, comprising the bilayer is permit-
ted) σout

0 = σin
0 = σb,fr

0 , where the upper index “b, fr”
refers to a bilayer with free flip-flop. In this case, the re-
sults for σb,fr

0 (Σ), Sout
0 (Σ) and Sin

0 (Σ) for an arbitrary
surface Σ are:

σb,fr
0 (Σ) = km

s

S(Σ) − Sb
0

Sb
0

Sout,fr
0 (Σ) = Sb

0 +
(

lm +
km

c cm
0

km
s

)∮
Σ

(c1 + c2)ds

Sin,fr
0 (Σ) = Sb

0 −
(

lm +
km

c cm
0

km
s

)∮
Σ

(c1 + c2)ds,

(26)

and the elastic energy Eb,fr[Σ, Sout,fr
0 (Σ), Sin,fr

0 (Σ)] is:

Eb,fr
[
Σ, Sout,fr

0 (Σ), Sin,fr
0 (Σ)

]
=

Sb
0

km
s

[
σb,fr

0 (Σ)
]2

+
∮

Σ

1
2
Kb

c(c1 + c2)2ds. (27)

The shape equation in the case of free flip-flop, obtained
through a variation of the total shape energy Gb,fr(Σ) =

Eb,fr[Σ, Sout,fr
0 (Σ), Sin,fr

0 (Σ)] + ∆pV of the bilayer is:

∆p+2σb,fr
0 (c1 + c2)+Kb

c{(c1 + c2)
[
2c1c2 − 1

2
(c1 + c2)2

]
− ∆s(c1 + c2)} = 0. (28)

Consequently, a lipid bilayer at free flip-flop behaves as a
symmetrical membrane with bending and stretching elas-
ticities twice the ones of its constituent monolayers, and
an area in the flat tension free state equal to the half sum
of the respective areas of the monolayers. This is also true
for the second variation of the total shape energy of a
surface, satisfying the shape equation (28).

When the flip-flop between the monolayers is forbid-
den, the quantities Sout

0 and Sin
0 are fixed. Let, for a given

surface Σ, Cb,bl
0 (Σ) and σb,bl

0 (Σ), be defined as follows:

Cb,bl
0 (Σ) =

2km
s

Kb
cS

b
0

(
lm +

km
c cm

0

km
s

)

×
[
Sout

0 − Sin
0

2
−

(
lm +

km
c cm

0

km
s

) ∮
Σ

(c1 + c2)ds

]

σb,bl
0 (Σ) = km

s

S(Σ) − Sb
0

Sb
0

, (29)

where the upper index “b, bl” refers to a bilayer
with blocked flip-flop. The estimation of Cb,bl

0 gives
Cb,bl

0 ∼ (Sb
0)−

1
2 . At blocked flip-flop, the elastic energy

Eb,bl(Σ, Sout
0 , Sin

0 ) is:

Eb,bl(Σ, Sout
0 , Sin

0 ) =

Sb
0

km
s

[σb,bl
0 (Σ)]2 +

∮
Σ

1
2
Kb

c(c1 + c2)2ds

+
km

s

Sb
0

[
Sout

0 − Sin
0

2
−

(
lm +

km
c cm

0

km
s

) ∮
Σ

(c1 + c2)ds

]2

·
(30)

After variation of the appropriate total shape energy
Gb,bl(Σ, Sout

0 , Sin
0 ) = Eb,bl(Σ, Sout

0 , Sin
0 )+∆pV , the shape

equation of a lipid bilayer with blocked flip-flop can be
written:

∆p + 2σb,bl
0 (c1 + c2)

+ Kb
c

{
(c1 + c2)

[
2c1c2 − 1

2
(c1 + c2)2

]

− 2Cb,bl
0 c1c2 − ∆s(c1 + c2)

}
= 0. (31)

The comparison of equations (26, 28, 29, 31) shows that,
concerning the shape equation, the difference between the
free and blocked flip-flop is only in the appearance of
an effective spontaneous curvature Cb,bl

0 , given by equa-
tion (29). From equation (31) it follows that a membrane
exists with modified bending elasticity modulus Kc, σ0,
and spontaneous curvature ceff0 ææ (see Eq. (19)), equal
to Kb

c , σb,bl
0 , and Cb,bl

0 of a lipid bilayer. This membrane
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has to satisfy the shape equation for the same shape, as
the lipid bilayer. For a membrane with c0 ∼ (S0)−

1
2 the

opposite is also true, i.e. a lipid bilayer can be chosen in
such a way that both to satisfy the shape equation for
the same shape. As for the second variation of the to-
tal shape energy of the bilayer, δ2Gb, it can be written
as δ2Gb = δ2

(1)G
b + δ2

(2)G
b, where δ2

(1)G
b corresponds to

the one obtained by Ou-Yang Zhong-can and Helfrich [5],
with effective values of the bending elasticity Kb

c and the
spontaneous curvature Cb,bl

0 given by equation (29), and
δ(2)G

b is:

δ2Gb = 2
km

s

Sb
0

(
lm +

km
c cm

0

km
s

)2 [∮
Σ

2c1c2Ψds

]2

≥ 0. (32)

Consequently, the ensemble of the solutions of the shape
equation (31) of bilayers with blocked flip-flop coincides
with the catalog of the not trivial solutions of the shape
equation (18) of membranes with given parameters (elas-
ticity moduli and spontaneous curvature). In both cases
the problem of the stability of the found shapes needs ad-
ditional examination.

5 Thermal form fluctuations
of a quasi-spherical lipid vesicle

The problem of the thermal form fluctuations of a quasi-
spherical vesicle, whose membrane has given elastic mod-
uli, spontaneous curvature and mean area S was solved
theoretically by Milner and Safran [11]. We will study the
case when the membrane is a lipid bilayer. The experi-
ments in which these fluctuations are measured usually
take about of 10 minutes [12], while the typical times for
the flip-flop of the bilayer are of the order of many hours.
This is the reason why the most plausible assumption is
that Sout

0 and Sin
0 remain constant. Another assumption,

which we will make, is the conservation of the volume V
of the vesicle. It was used by Milner and Safran [11] as
well.

Let R0 be the radius of a sphere with the same volume
as the vesicle V = 4π(R0)2/3). Let XY Z be a laboratory
reference frame, the origin O being inside the vesicle.
Observing the fluctuating vesicle with a 3-dimensional
technique, we define R(θ, ϕ, t) to be the modulus of the
radius-vector of a point on the surface of the vesicle in
the direction (θ, ϕ) (spherical coordinates) at a moment
t:

R(θ, ϕ, t) = R0[1 + u(θ, ϕ, t)]. (33)

Let Y m
n (θ), n ≥ |m| ≥ 0, be the orthonormal spherical

harmonics (for details see Bivas et al. [13]). The ampli-
tudes u(θ, ϕ, t) can be expanded in a series of Y m

n :

u(θ, ϕ, t) =
nmax∑
n=0

∑
|m|≤n

um
n (t) · Y m

n (θ, ϕ) . (34)

Using the assumptions, mentioned above the elastic en-
ergy Eb(Σ(t), Sout

0 , Sin
0 ) can be expressed by the ensemble

of amplitudes um
n (t):

Eb(Σ(t), Sout
0 , Sin

0 ) =
km

s

Sb
0

[
(S − Sb

0)
2 − 2S

R0

(
lm +

km
c cm

0

km
s

)
(Sout

0 − Sin
0 )

]

+
1
2
Kb

c

nmax∑
n=2

n∑
m=−n

(n − 1)n(n + 1)(n + 2)|um
n (t)|2. (35)

We denote:

σ(S) = 2km
s

(S − Sb
0)

Sb
0

cfluct
0 =

km
s

Kb
c

(
lm +

km
c cm

0

km
s

)
Sout

0 − Sin
0

Sb
0

·
(36)

Milner and Safran [11] assumed that the mean square
fluctuations |um

n (t)|2 at fixed area are the same as those
at fixed tension σ. This assumption is valid when the
normalized tension σ = σ(R0)2/Kc is sufficiently higher
than −6 [14,15]. In the frames of this assumption we ob-
tain the well-known expression for the mean square am-
plitudes |um

n (t)|2 [11]:

|um
n (t)|2 =

kT

Kb
c

1

(n − 1)(n + 2)[n(n + 1) + σ − 2cfluct
0 R0]

·
(37)

The effective value of σ, participating in this equation, is:

σ = 2km
s

S − Sb
0

Sb
0

, (38)

where S is expressed by the mean square amplitudes
[um

n (t)]2 as [11]:

S = 4π(R0)2 +
(R0)2

2

nmax∑
n=−2

n∑
m=−n

[um
n (t)]2 · (39)

Seifert [16], making a critical analysis of the theory of
Milner and Safran, has shown that if the orders higher
than the second one in the development of the energy with
respect to the amplitudes um

n are neglected and the excess
area of the vesicle is much less than the area of the vesicle
the results of Milner and Safran are true (excess area is
the difference between the area of the vesicle and the area
of the sphere with the vesicle’s volume). Equation (37)
shows, that when the results of the theory of Milner and
Safran are applicable the relevant bending elasticity Kb

c

for lipid bilayers is the same in both the shape equa-
tion, and the equation for the mean square amplitudes
of the fluctuating modes. It is equal to the doubled value
of the modified, due to the asymmetry, bending elasticity
of the monolayer. This is exactly the bending elasticity at
free flip-flop introduced by Helfrich [2]. The value of the
spontaneous curvature ceff0 in the shape equation does not
coincide with the value cfluct

0 .
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Bothorel, J. Phys. France 50, 2389 (1989)
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